CMAverse 0.1.0
  • Overview of Modeling Approaches
  • Quickstart
  • Examples
    • Statistical Modeling with a Single Mediator
    • Statistical Modeling with Multiple Mediators
    • Statistical Modeling for a Case Control Study
    • Statistical Modeling with Missing Data
    • Statistical Modeling with Post-exposure Confounding
    • Sensitivity Analysis for Measurement Error
    • Statistical Modeling with a Time-to-event Mediator
  • Functions
  • GitHub

Reference

All functions

cma2020

The Dataset cma2020

cmdag()

DAG Visualization

cmest() print(<cmest>) summary(<cmest>) print(<summary.cmest>)

Causal Mediation Analysis

cmsens() print(<cmsens.uc>) print(<cmsens.me>) summary(<cmsens.me>) print(<summary.cmsens.me>)

Sensitivity Analysis For Unmeasured Confounding and Measurement Error

ggcmest()

Plotting Point Estimates and Confidence Intervals of Causal Effects

ggcmsens()

Plotting Results of Sensitivity Analysis for Measurement Error

rcreg() coef(<rcreg>) vcov(<rcreg>) sigma(<rcreg>) formula(<rcreg>) family(<rcreg>) predict(<rcreg>) model.frame(<rcreg>) print(<rcreg>) summary(<rcreg>) print(<summary.rcreg>) update(<rcreg>)

Regression Calibration for Measurement Error Correction

simexreg() coef(<simexreg>) vcov(<simexreg>) sigma(<simexreg>) formula(<simexreg>) family(<simexreg>) predict(<simexreg>) model.frame(<simexreg>) print(<simexreg>) summary(<simexreg>) print(<summary.simexreg>) update(<simexreg>)

Simulation and Extrapolation for Measurement Error Correction

svymultinom() coef(<svymultinom>) vcov(<svymultinom>) formula(<svymultinom>) predict(<svymultinom>) model.frame(<svymultinom>) print(<svymultinom>) summary(<svymultinom>) print(<summary.svymultinom>) update(<svymultinom>)

Multinomial Regression with Survey Data

Contents

Developed by Baoyi Shi, Jun yin, Christine Choirat, Linda Valeri.

Site built with pkgdown 1.6.1.